On the Galois module structure of ideal class groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fractional Galois ideal, Stark elements and class-groups

We refine the definition of the fractional Galois ideal introduced in [Paul Buckingham. The canonical fractional Galois ideal at s = 0. J. Number Theory, 128(6):1749–1768, 2008] which was based on Snaith’s fractional ideal, allowing us to give a general relationship of this object with the Stark elements appearing in Rubin’s integral sharpening of Stark’s Conjecture. We motivate this by using t...

متن کامل

Galois Modules, Ideal Class Groups and Cubic Structures

We establish a connection between the theory of cyclotomic ideal class groups and the theory of “geometric” Galois modules and obtain results on the Galois module structure of coherent cohomology groups of Galois covers of varieties over Z. In particular, we show that an invariant that measures the obstruction to the existence of a virtual normal integral basis for the coherent cohomology of su...

متن کامل

On the Structure of Ideal Class Groups of CM - Fields

For a CM-field K which is abelian over a totally real number field k and a prime number p, we show that the structure of the χ-component AχK of the p-component of the class group ofK is determined by Stickelberger elements (zeta values) (of fields containing K) for an odd character χ of Gal(K/k) satisfying certain conditions. This is a generalization of a theorem of Kolyvagin and Rubin. We defi...

متن کامل

Galois Action on Class Groups

It is well known that the Galois group of an extension L/F puts constraints on the structure of the relative ideal class group Cl(L/F ). Explicit results, however, hardly ever go beyond the semisimple abelian case, where L/F is abelian (in general cyclic) and where (L : F ) and #Cl(L/F ) are coprime. Using only basic parts of the theory of group representations, we give a unified approach to th...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 2001

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000008072